Strong Consistency with NoSQL Databases

Tobias Voß
30.04.2014
Facts & Figures

Founded 1994

More than 100 employees

2013 more than 15 million Euro turnover

Independent – of product vendors and banks

Long-time customer relations

Close connection with our customers

Offices in Münster, Köln
Eventual Consistency Is Acceptable

Detailliert
über Produkte informieren
ACID Transactions

- All or nothing
- Once committed, it will remain
- Concurrent serially
- One valid state → another valid state
CAP Theorem (Brewer, 2000)

Consistency

Partition tolerance

Availability
• Amazon popularized the concept of **Eventual Consistency**

 • “the storage system guarantees that if no new updates are made to the object, eventually all accesses will return the last updated value”

Werner Vogels, Amazon.com
bestellbar® – easy.mobile.order.

Customer orders with app

Handle order

Bartender handles orders

Still delivered personally!

Place order

Edit menu

bestellbar® manager
Edit products, prices, tables, promotions etc.
bestellbar® Architecture

Android (native app) iOS (native app) bestellbar® manager Cash point

REST / JSON Resources GWT-RPC Services XMPP Services

Data Access Layer (Objectify)

Datastore Blobstore App Engine API

Google App Engine

Backend
Accept Eventual Consistency

Detailliert
über Produkte informieren

Getränk
mit 2Klicks bestellen
Accept Eventual Consistency

Über das Internet
kommt die Bestellung direkt an die Theke
Agile Approach

- Design
- Test
- Develop

Diagram showing the iterative cycle of Design, Test, and Develop.
Pitfalls with Eventual Consistency
<table>
<thead>
<tr>
<th>Operation</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Put (with primary key)</td>
<td>Strong Consistency</td>
</tr>
<tr>
<td>Delete (with primary key)</td>
<td>Strong Consistency</td>
</tr>
<tr>
<td>Get (with primary key)</td>
<td>Strong Consistency</td>
</tr>
<tr>
<td>Query (without ancestor)</td>
<td>Eventual Consistency</td>
</tr>
<tr>
<td>Ancestor Query (entity group)</td>
<td>Strong Consistency</td>
</tr>
</tbody>
</table>
bestellbar® Data Model (Simplified)
• we decided in favor of a two-level hierarchy in order to simplify the data access operations
 • one parent instead of a complete hierarchy of up to six ancestors
• the Entity Group is identical for both approaches
Ancestor Queries

- SELECT * FROM Category
 WHERE ancestor IS location.key()
- SELECT * FROM Table
 WHERE ancestor IS location.key()
- SELECT * FROM Article
 WHERE ancestor IS location.key()

- the two-level hierarchy enabled us to migrate the data
- works well with n:m-relationship at lower levels
Datastore Migration

- Ancestor for entity group has to be given at insert time.
- Cost = about 10 person-days
 - Migration was the smaller amount.
 - Changing the queries to include the ancestor was the main part.
- Downtime = about half an hour (after careful preparation).
"There is no such thing as a free lunch"

1 write per second

CAP told us

tradeoff C vs. A
A Deliberate Decision

strong consistency → relational database

scale accepting eventual consistency → NoSQL database

strong consistency for some cases → apply consciously
Thank you for your attention