High Performance Time Series Databases
Agenda

• What is anomaly detection?
• Some examples
• Compression == Truth
• Deep dive into deep learning
• Time series databases and deep learning
Who I am

• Ted Dunning, Chief Application Architect, MapR
dunning@mapr.com
tdunning@apache.org
@ted_dunning

• Committer, mentor, champion, PMC member on several Apache projects
• Mahout, Drill, Zookeeper others
Who we are

• MapR makes the technology leading distribution including Hadoop
• MapR integrates real-time data semantics directly into a system that also runs Hadoop programs seamlessly
• The biggest and best choose MapR
 – Google, Amazon
 – Largest credit card, retailer, health insurance, telco
 – Ping me for info
What is Anomaly Detection?

• What just happened that shouldn’t?
 – but I don’t know what failure looks like (yet)

• Find the problem before other people see it
 – especially customers and CEO’s

• But don’t wake me up if it isn’t really broken
Looks pretty anomalous to me
Will the real anomaly please stand up?
What Are We Really Doing

• We want action when something breaks
 (dies/falls over/otherwise gets in trouble)
• But action is expensive
• So we don’t want false alarms
• And we don’t want false negatives

• We need to trade off costs
A Second Look

![Graph showing a signal over time](image-url)
A Second Look

99.9%-ile
How Hard Can it Be?

Online Summarizer

99.9%-ile

x

x > t?

Alarm!

© MapR Technologies, confidential
Already Done? Etsy Skyline?

- **past hour**
 - name of anomalous metric
- **past 24 hours**
- **red line shows detected anomalous datapoint**
- **holy anomaly!**
- **timeseries datapoint that triggered detection**
- **list of anomalous metrics**
What About This?
Spot the Anomaly
Maybe not!
Where’s Waldo?

This is the real anomaly
Normal Isn’t Just Normal

• What we want is a model of what is normal

• What doesn’t fit the model is the anomaly

• For simple signals, the model can be simple …

\[x \sim N(0, \sigma) \]

• The real world is rarely so accommodating
We Do Windows
Windows on the World

• The set of windowed signals is a nice model of our original signal
• Clustering can find the prototypes
 – Fancier techniques available using sparse coding

• The result is a dictionary of shapes
• New signals can be encoded by shifting, scaling and adding shapes from the dictionary
Most Common Shapes (for EKG)
Reconstructed signal

Original signal

Reconstructed signal

Reconstruction error

< 1 bit / sample
An Anomaly

Original technique for finding 1-d anomaly works against reconstruction error.
Close-up of anomaly

Not what you want your heart to do.
And not what the model expects it to do.
Model Delta Anomaly Detection

Model

Online Summarizer

\[\delta > t ? \]

99.9%-ile

Alarm!
Recap (out of order)

- Anomaly detection is best done with a probability model.
- \(-\log p\) is a good way to convert to anomaly measure.
- Adaptive quantile estimation works for auto-setting thresholds.
Agenda

• What is anomaly detection?
• Some examples
• Compression == Truth
• Deep dive into deep learning
• Time series databases and deep learning
Probability Models

- We make observations, $x_i \in E$
- Each observation has underlying probability $p(e)$
- We want to estimate these probabilities,
 \[p(e) \]
- We call $p(e)$ “truth”
Compression

• Our probability estimate lets us compress our observations
• The compressed size of one event is
 \[|e| \log_2 e \]

• The size of a bunch of events is
 \[|c(e_1...e_n)| \sum_i \log_2 e_i \]
But Wait! Compression is Truth

• Maximizing $E[\log_2 e]$ minimizes compressed size

• Maximizing $E[\log_2 e]$ happens exactly when $e = p(e)$
But Auto-encoders Find Max Likelihood

• Minimal error ⇒ maximum likelihood

• Maximum likelihood ⇒ maximum compression

• So good anomaly detectors give optimal compression
In Case You Want the Details

\[E[\log_e x] = p_e \log_e x \]

\[\log x = x - 1 \]

\[p_e \log_e \frac{e}{p_e} = p_e \frac{1}{p_e} = e = 0 \]

\[p_e \log_e p_e^k = 0 \]

\[p_e \log_e p_e = p_e \log p_e \]

\[E[p_e \log_e x] = \frac{1}{n} \sum_{i=1}^{n} \log x_i \]
Conclusion

Compression = truth
Pause To Reflect on Clustering

• Use windowing to apportion signal
 – Hamming windows add up to 1

• Find nearest cluster for each window
 – Can use dot product because all clusters normalized

• Scale cluster to right size
 – Dot product again

• Subtract from original signal
Clustering as Neural Network

- Input
- Hidden layer is 1 of k
- Hidden layer (clusters)
- Could be m of k
- Reconstruction

Sparsity allows $k >> 100$
Clustering as Neural Network

Input

Hidden layer (clusters)

Reconstruction is lookup

Dot product = distance

Reconstruction
Overlapping Networks

Time series input

Reconstructed time series
Deep Learning
What About the Database?

• We don’t have to keep the reconstruction
• We can keep the first level nodes
 – And the reconstruction error
• To keep the first level nodes
 – We can keep the second level nodes
 – Plus the reconstruction error
What Does it Matter?

• Even one level of auto-encoding compresses
 – 30-50x in EKG example with k-means

• Multiple levels compress more
 – Understanding => Truth => Compression

• Higher levels give semantic search
System Architecture

\[\delta_1 \ldots \delta_n (x_1 \ldots x_n) \]

DB

Model

© MapR Technologies, confidential
Who I am

• Ted Dunning, Chief Application Architect, MapR
tdunning@mapr.com
tdunning@apache.org
@ted_dunning

• Committer, mentor, champion, PMC member on several Apache projects
• Mahout, Drill, Zookeeper others