Self-healing Data
Step by Step

Uwe Friedrichsen (codecentric AG) – NoSQL matters – Cologne, 29. April 2014
Why NoSQL?

- Scalability
- Easier schema evolution
- Availability on unreliable OTS hardware
- It’s more fun ...
Why NoSQL?

- Scalability
- Easier schema evolution
- Availability on unreliable OTS hardware
- It’s more fun ...
Challenges

- Giving up ACID transactions
- (Temporal) anomalies and inconsistencies
 short-term due to replication or long-term due to partitioning

It might happen. Thus, it will happen!
Consistency

ACID / 2PC

Strong Consistency
Quorum R&W / Paxos

Eventual Consistency
CRDT / Gossip / Hinted Handoff

Availability

Partition Tolerance
Strict Consistency (CA)

- Great programming model
 no anomalies or inconsistencies need to be considered
- Does not scale well
 best for single node databases

„We know ACID – It works!“

„We know 2PC – It sucks!“

Use for moderate data amounts
And what if I need more data?

- Distributed datastore
- Partition tolerance is a must
- Need to give up strict consistency (CP or AP)
Strong Consistency (CP)

- Majority based consistency model
can tolerate up to N nodes failing out of 2N+1 nodes
- Good programming model
 Single-copy consistency
- Trades consistency for availability
 in case of partitioning

Paxos (for sequential consistency)

Quorum-based reads & writes
Quorum-based reads & writes

- N – number of nodes (replicas)
- R – number of reads delivering the same result required
- W – number of confirmed writes required

\[W > N/2 \]
\[R + W > N \]
Example 1

- 3 replica nodes

 This is: $N = 3$

- $W > N / 2 \Rightarrow W > 3 / 2 \Rightarrow W > 1.5$

 Let’s pick: $W = 2$ (can tolerate failure of 1 node)

- $R + W > N \Rightarrow R + 2 > 3 \Rightarrow R > 1$

 Let’s pick: $R = 2$ (can tolerate failure of 1 node)
R = 2 ✔

Client

2x ☐ / 1x ☐ ✔

Node 1
Node 2
Node 3
$R = 1 \; \times$

Client

1x • / 1x ○

Node 1

Node 2

Node 3
Example 2

• 3 replica nodes

 This is: $N = 3$

• $W > N / 2 \Rightarrow W > 3 / 2 \Rightarrow W > 1,5$

 Let’s pick: $W = 3$ \textit{(strict consistency – does not tolerate any failure)}

• $R + W > N \Rightarrow R + 3 > 3 \Rightarrow R > 0$

 Let’s pick: $R = 1$ \textit{(single read from any node sufficient)}
Example 3

• 5 replica nodes
 This is: \(N = 5 \)

• \(W > N / 2 \) \(\Rightarrow \) \(W > 5 / 2 \) \(\Rightarrow \) \(W > 2.5 \)
 Let’s pick: \(W = 3 \) (can tolerate failure of 2 nodes)

• \(R + W > N \) \(\Rightarrow \) \(R + 3 > 5 \) \(\Rightarrow \) \(R > 2 \)
 Let’s pick: \(R = 3 \) (can tolerate failure of 2 nodes)
Limitations of QB R&W

• Client-centric consistency
 Strong consistency only perceived on client, not on nodes

• Requires additional measures on nodes
 Nodes need to implement at least eventual consistency

• Requires fixed set of replica nodes
 Dynamic adding and removal of nodes not possible

Use if client-perceived strong consistency is sufficient and simplicity trumps formal precision
And what if I need more availability?

- Need to give up strong consistency (CP)
- Relax required consistency properties even more
- Leads to eventual consistency (AP)
Eventual Consistency (AP)

• Gives up some consistency guarantees
 no sequential consistency, anomalies become visible

• Maximum availability possible
 can tolerate up to N-1 nodes failing out of N nodes

• Challenging programming model
 anomalies usually need to be resolved explicitly

Gossip / Hinted Handoffs

CRDT
Conflict-free Replicated Data Types

- Eventually consistent, self-stabilizing data structures
- Designed for maximum availability
- Tolerates up to N-1 out of N nodes failing

State-based CRDT: Convergent Replicated Data Type (CvRDT)

Operation-based CRDT: Commutative Replicated Data Type (CmRDT)
A bit of theory first ...
Convergent Replicated Data Type

State-based CRDT – CvRDT

- All replicas (usually) connected
- Exchange state between replicas, calculate new state on target replica
- State transfer at least once over eventually-reliable channels
- Set of possible states form a Semilattice
 - Partially ordered set of elements where all subsets have a Least Upper Bound (LUB)
- All state changes advance upwards with respect to the partial order
Commutative Replicated Data Type

Operation-based CRDT - CmRDT

- All replicas (usually) connected
- Exchange update operations between replicas, apply on target replica
- Reliable broadcast with ordering guarantee for non-concurrent updates
- Concurrent updates must be commutative
That’s been enough theory ...
Counter
Op-based Counter

Data
 Integer i

Init
 i := 0

Query
 return i

Operations
 increment(): i := i + 1
 decrement(): i := i - 1
State-based G-Counter (grow only)
(Naïve approach)

\[\text{Data}\]
\[\text{Integer } i\]

\[\text{Init}\]
\[i := 0\]

\[\text{Query}\]
\[\text{return } i\]

\[\text{Update}\]
\[\text{increment(): } i := i + 1\]

\[\text{Merge}(j)\]
\[i := \text{max}(i, j)\]
State-based G-Counter (grow only)
(Naïve approach)
State-based G-Counter (grow only)
(Vector-based approach)

Data
Integer V[] / one element per replica set

Init
V := [0, 0, ... , 0]

Query
return ∑i V[i]

Update
increment(): V[i] := V[i] + 1 / i is replica set number

Merge(V')
∀i ∈ [0, n-1] : V[i] := max(V[i], V'[i])
State-based G-Counter (grow only)
(Vector-based approach)
State-based PN-Counter (pos./neg.)

- Simple vector approach as with G-Counter does not work
- Violates monotonicity requirement of semilattice
- Need to use two vectors
 - Vector P to track incements
 - Vector N to track decrements
 - Query result is $\sum_i P[i] - N[i]$
State-based PN-Counter (pos./neg.)

Data

Integer $P[\cdot], N[\cdot]$ / one element per replica set

Init

$P := [0, 0, \ldots, 0], N := [0, 0, \ldots, 0]$

Query

Return $\sum_i P[i] - N[i]$

Update

increment(): $P[i] := P[i] + 1$ / i is replica set number
decrement(): $N[i] := N[i] + 1$ / i is replica set number

Merge(P', N')

$\forall i \in [0, n-1]: P[i] := \max(P[i], P'[i])$
$\forall i \in [0, n-1]: N[i] := \max(N[i], N'[i])$
Non-negative Counter

Problem: How to check a global invariant with local information only?

- **Approach 1:** Only dec if local state is > 0
 - Concurrent decs could still lead to negative value

- **Approach 2:** Externalize negative values as 0
 - `inc(negative value) == noop()`, violates counter semantics

- **Approach 3:** Local invariant – only allow dec if \(P[i] - N[i] > 0 \)
 - Works, but may be too strong limitation

- **Approach 4:** Synchronize
 - Works, but violates assumptions and prerequisites of CRDTs
Sets
Op-based Set
(Naïve approach)

\textit{Data}

Set S

\textit{Init}

S := \{\}

\textit{Query(e)}

return \(e \in S \)

\textit{Operations}

\text{add}(e) : S := S \cup \{e\}

\text{remove}(e) : S := S \setminus \{e\}
Op-based Set
(Naïve approach)

\[S = \{ e \} \]

\[S = \{ e \} \]
State-based G-Set (grow only)

Data
Set S

Init
S := {}

Query(e)
return e ∈ S

Update
add(e): S := S U {e}

Merge(S')
S = S U S'
State-based 2P-Set (two-phase)

Data
Set A, R
/ A: added, R: removed

Init
A := {}, R := {}

Query(e)
return e ∈ A ∧ e ∉ R

Update
add(e): A := A ∪ {e}
remove(e): (pre query(e)) R := R ∪ {e}

Merge(A', R')
A := A ∪ A', R := R ∪ R'
Op-based OR-Set (observed-remove)

Data

Set S / Set of pairs \{ (element e, unique tag u), ... \}

Init

$S := \{\}$

Query(e)

return $\exists u : (e, u) \in S$

Operations

add(e): $S := S \cup \{ (e, u) \}$ / u is generated unique tag

remove(e):

pre query(e)

$R := \{ (e, u) \mid \exists u : (e, u) \in S \}$ /at source („prepare“)

$S := S \setminus R$ /downstream („execute“)
Op-based OR-Set (observed-remove)

R1

I
S = {}

add(e)
S = {e}

rmv(e)
S = {}

add(e_b)
S = {e_b}

R2

I
S = {}

add(e_b)
S = {e_b}

add(e_a)
S = {e_a, e_b}

rmv(e_a)
S = {e_b}

R3

I
S = {}

add(e)
S = {e_b}

More datatypes

- Register
- Dictionary (Map)
- Tree
- Graph
- Array
- List

plus more representations for each datatype
Garbage collection

- Sets could grow infinitely in worst case
- Garbage collection possible, but a bit tricky
 - Only remove updates that can be deleted safely and were received by all replicas
 - Usually implemented using vector clocks
 - Can tolerate up to n-1 crashes
 - Live only while no replicas are crashed
 - Can induce surprising behavior sometimes
 - Sometimes stronger consensus is needed (Paxos, ...)

...
Limitations of CRDTs

- Very weak consistency guarantees
 Strives for "quiescent consistency"

- Eventually consistent
 Not suitable for high-volume ID generator or alike

- Not easy to understand and model

- Not all data structures representable

Use if availability is extremely important
Further reading

1. Shapiro et al., Conflict-free Replicated Data Types, Inria Research report, 2011

2. Shapiro et al., A comprehensive study of Convergent and Commutative Replicated Data Types, Inria Research report, 2011

Wrap-up

- CAP requires rethinking consistency
- Strict Consistency
 ACID / 2PC
- Strong Consistency
 Quorum-based R&W, Paxos
- Eventual Consistency
 CRDT, Gossip, Hinted Handoffs

Pick your consistency model based on your consistency and availability requirements
The real world is not ACID

Thus, it is perfectly fine to go for a relaxed consistency model
@ufried