Who are we

- Small startup founded by Avi Kivity (Creator of KVM)
- Around 15 people, including some Linux veterans
 - 10 countries
- Headquarters in Israel
- Our mission is to build the default OS for public and private Clouds.
Typical Cloud Stack

- Application
- Application Server
- Runtime (JVM)
- Operating System
- Hypervisor
- Hardware

Protection and abstraction
“Library OS”

- Application
- Application Server
- Runtime (JVM) + OSv
- Hypervisor
- Hardware
OSv

- LibraryOS written from scratch in C++11
 - Actually network stack came initially from FreeBSD, heavily modified
 - ZFS filesystem from Open Solaris
- BSD Licensed.
- Implements most of the (Linux) POSIX API
- Better if we have a runtime (Java at the moment)
- It supports only one application.
- KVM, Xen, VirtualBox, VMWare
- Image size as low as ~15 Mb
- Beta expected in a couple of months.
OSv and NoSQL

- Think of us as "No-OS"
- You can distribute a copy of your application that will run directly on a hypervisor/cloud
- Cassandra
 - Due to its Java focus
- in memory redis
 - Due to its pervasiveness
- memcached
 - Due to its simplicity
- mongodb
 - Because I wanted to.
"Mark my words, GridGain [...] and OSv [...] are going to be excitingly disruptive in the next few years. [...] And, by the way, if, after reading this blog, you are not dropping everything and porting your cloud application to OSv, I don’t know what’s wrong with you."

Performance

- **System calls are free**
 - context switches are really cheap (x 4 Fedora* Linux)

- **Network performance significantly faster**
 - around 20% with netperf over Fedora Linux
 - more than 50% for some UDP workloads

- **SpecJVM between 3 and 5% faster.**
 - Not a lot actually expected

- **Boots < 1 second.**

* Fedora 19, roughly 6 - 8 months old Linux Kernel
Real savings: sysadmins

- No command line,
 - except for compatibility
- no graphical interface either.
- REST API for full automation.
- Almost zero configuration
 - Compare with almost 200 in a very stripped down Linux
 - or even registry.
Capstan

- Capstan is a tool for building and running your application on OSv (under a hypervisor)
- Docker-like command line interface
 - `capstan run cloudius/cassandra`
- Multi-platform
 - Linux, OS X, Windows
 - QEMU/KVM, VirtualBox, VMware
 - Google Compute Engine, Amazon EC2
mmap

● mmap is a system call for mapping files to memory
 ○ NoSQL databases rely on it for persistence, caching, I/O, and copy-on-write

● Page cache behavior is important for database performance
 ○ Recent Linux & PostgreSQL fsync() problems

● ZFS + mmap = :-(
 ○ ZFS ARC cache is not integrated with page cache.
 ○ We are trying to fix that.
• unmodified:
• modified:
 ○ that showcases the real performance opportunity behind OSv.

That's already ~20 % more at http://osv.io/benchmarks/
Cassandra

- A bug in our mmap implementation creates some instability
- Performance is on pair with Linux
 - But room for improvement is very big.
- There is, however, less need to worry about JVM parameters due to JVM Ballooning and friends
MongoDB, redis and more

- recently started to meddle with them
 - No trusted numbers for them yet - follow us for news!
- Mongo has a problem with mmap as well as Cassandra
 - Should be ready soon
- Redis is way too dependent on COW/fork for persistence
- Mongo and Cassandra are quite dependent on mmap
 - There is still work to do with that, but over time using our own APIs can help there as well
To know more

http://osv.io

https://github.com/cloudius-systems/osv

@CloudiusSystems

osv-dev@googlegroups.com
Virtualization Oriented

- No spinlocks in the whole kernel
 - Because of lockholder preemption
- No complicated hardware model
- Avoid things that are traditionally more expensive in HV
 - Like IPIs and timer setting
- We also feature a fair scheduler, support multiple page sizes transparently and avoid page metadata overhead.